

New challenges to traffic safety: Focus on personal prevention

Diva Eensoo

University of Tartu Estonian Centre of Behavioural and Health Sciences Estonia

ETSC 2018. 12th Road Safety Performance Index Report

European Union road safety target and progress

ETSC 2018. 12th Road Safety Performance Index Report

Relative change (%) in road deaths between 2016 and 2017 in European countries

UNIVERSITY OF TARTU

ETSC 2018. 12th Road Safety Performance Index Report

Introduction

- The majority of the traffic accidents are associated with risky driving behaviour that is especially common among young novice drivers.
- Risky behaviour, including risky traffic behaviour, is associated with high impulsivity.
- Impulsivity related behaviours are associated with biological differences, especially serotonergic and dopaminergic functioning in the brain.
- Allelic variations in genes such as serotonin transporter gene (5-HTTLPR) and dopamine transporter gene (DAT1 VNTR) mediate respectively dopaminergic and serotonergic functioning in the brain.
- Behaviour = environment x genotypes

The aim

- To show effectiveness of two intervention studies carried out in driving schools.
- To clarify how impulsivity-related allelic variations in genes such as dopamine transporter gene (DAT1 VNTR) and serotonin transporter gene (5-HTTLPR) are associated with traffic behaviour and intervention.
- To argue how obtained knowledges could be use to achieve road safety targets along with other actions.

The samples

Study 1*, from 2007 4.5 years

UNIVERSITY OF TARTU

Study 2[#], from 2014 3 years

		Intervention group	Controls	Total	mean age: 22.5 (SD=7.9) years
Male	n	321	303	624	
Female	n	416	401	817	
Total	n	737	704	1441	1341 saliva samples

* Paaver et al., 2013; Eensoo et al., 2018; [#] Luht et al. submitted

Methods (I)

• The intervention "Reducing Impulsive Action in Traffic" Passive learning method (lecture 45')

- tips for self-monitoring
- personal risks
- results of studies

Active learning method (group work with discussions 45').

• role of personality and cognitive factors in different traffic collisions

• Study 1: the intervention was carried out by a psychologist

 Study 2: driving school teachers were specially trained (2 ECTS) to carry out the intervention.

Methods (II)

Main ideas and aims of the intervention

Adaptive and Maladaptive Impulsivity Scale (AMIS, Eensoo et al., 2007)¹⁰

Methods (IV)

• 5-HTTLPR (s' carriers vs l'/l') and *DAT1* VNTR (9R carriers vs 10R/10R) were genotyped

• Traffic insurance and police databases

- Traffic collisions (active and passive)
- Speed limit exceeding
- Drunk driving
- Other violations
- General traffic risk (occurrence of either recorded traffic offence or a collision)

Study 1: Incidents in traffic during 4.5 year study period

ar study period for the university of the tartu

Study 1: Impulsivity measures **INIVERSITY OF TARTU** predicting incidents in traffic by univariate Cox regression

	Speed limit exceeding	Drunk driving	Traffic collisions	Passive traffic collisions
	HR (95% CI)	HR (95% CI)	HR (95% CI)	HR (95% CI)
Excitement seeking	1.11 (1.08-1.15)	1.09 (1.02-1.16)	1.03 (1.01-1.05)	1.05 (1.02-1.08)
Fast decision-making	1.08 (1.04-1.12)	1.07 (1.00-1.15)	1.03 (1.00-1.05)	1.04 (1.01-1.08)
Disinhibition	1.01 (0.97-1.04)	1.06 (0.99-1.14)	0.99 (0.97-1.02)	1.00 (0.96-1.04)
Thoughtlessness	1.03 (1.00-1.06)	1.07 (1.01-1.14)	0.99 (0.97-1.02)	1.00 (0.97-1.03)

*p < 0.05, **p < 0.01, significant difference

Study 2: High general traffic risk

UNIVERSITY OF TARTU

(A, occurrence of either recorded traffic offence or a collision, p=0.004) and of traffic **collisions (B**, p = 0.038) during the three-year study period.

Study 2: Univariate Cox regression models predicting high **general traffic risk** (occurrence of either recorded traffic offence or a collision)

	HR (95% CI)
Excitement seeking	1.07 (1.04-1.10)
Fast decision-making	1.07 (1.04-1.11)
Thoughtlessness	1.02 (0.99-1.05)
Disinhibition	0.99 (0.95-1.02)
DAT1 VNTR, 9R carriers vs. 10R/10R	1.28 (1.01-1.64)

Study 2: Males high general traffic risk

(occurrence of either recorded traffic

offence or a collision) and drunk driving (DWI)

*p < 0.05, significant difference compared to DAT1 VNTR 9R carriers

Study 2: Females high general traffic risk (A, occurrence of either recorded traffic offence or a collision), traffic collisions (B),

Control

Intervention

passive (C) and active traffic collisions (D) by participation in intervention and DAT1 VNTR

*p < 0.05, **p < 0.01, significant difference

Control

Intervention

Study 2: Females high general traffic risk (A, occurrence of either recorded traffic offence or a collision) and traffic collisions (B) by participation in intervention and 5-HTTRPL

UNIVERSITY OF TARTU

*p < 0.05, significant difference

Conclusions

- The brief impulsiveness-focussed interventions effective and suitable prevention activity in driving schools and it could be implemented in other countries.
- Web-based intervention "Reducing Impulsive Action in Traffic"
- New risk-groups in traffic schoolchildren
- Our studies showed that both dopaminergic and serotonergic functioning in the brain are related to impulsive risk-taking behaviour in traffic, but differently by gender.

Thank you!

Neuropsychopharmacology research group

- Jaanus Harro
- Tõnis Tokko
- Kadi Luht
- Marika Paaver
- Mariliis Vaht
- Kariina Laas
- Evelyn Kiive
- Katrin Kaasik
- University Hospital Frankfurt
 Andreas Reif
- University of Würzburg
 Klaus-Peter Lesch

- Institute of Molecula and Cell Biology
 - Jüri Parik
- National Institute of Health Development
 - Toomas Veidebaum
 - Helle-Mai Loit
 - Jaana Rahno
- Tallinn University, Haapsalu College
 - Heli Ainjärv
- University of Uppsala
 - Lars Oreland

